OTHER / REVIEW PAPER
ORGANIC POLLUTION OF WATER AND HUMAN HEALTH
More details
Hide details
1
Pope John Paul II State School of Higher Education in Biała Podlaska, Poland
Submission date: 2016-04-07
Final revision date: 2016-05-16
Acceptance date: 2016-05-19
Publication date: 2017-03-09
Health Prob Civil. 2017;11(1):32-39
KEYWORDS
TOPICS
ABSTRACT
The issue of human health should be considered in correlation with monitoring and protection of environment we live in, because of the increase of pollution of anthropogenic origin and the increase of health risk. Health risk caused by water pollutants with chemical compounds, including toxic micropollutants is not fully assessed, since chemical pollutants cause undesirable health effects after a long-term exposition.
Therefore, it is very important to choose the methodology of research for wider spectrum of pollution, especially organic, that can pose a threat to human health, and can be detected in environmental samples. On the basis of the review of existing eco-analytical research chromatographic methods in water analysis were selected, especially high-performance liquid chromatography (HPLC) and gas chromatography (GC) with mass detection in GC/MS, HPLC/MS techniques.
Non-target analysis revealed a high diversity in water chemical composition and a wider spectrum of organic contaminants comprising pharmaceuticals, technical additives, personal care products and pesticides. Some of the identified compounds are known as pollutants whereas some of these substances are so far unregistered contaminants. Although it was reported that the application of some of the identified compounds has been banned or restricted (e.g. lindane), the analyses showed that they can still be found in the environment. The study presented not only a comprehensive view on the state of pollution in studied waters, but also the eco-analytic methods and research results of the study may serve as the basis for widening the monitoring of environment.
Persistent organic pollution is a threat to human life to different degrees and it has not been yet fully examined. Therefore, in order to protect human health it is necessary to develop chemical trace analysis – eco analysis in complex monitoring and protection of environment we live in.
REFERENCES (51)
1.
Główny Inspektorat Sanitarny. Stan sanitarny kraju w roku 2014. [cited 2015 Dec 07]; p. 109-119. Available.
3.
Główny Urząd Statystyczny. Ochrona Środowiska 2014. [cited 2015 Dec 10]; p. 35-37, 136-217. Available.
5.
Sozański MM. Technologia uzdatniania wody, tradycja i problemy współczesne. Monografia Szkoły Jakości.
6.
Wody 08. Koszalin: Politechnika Koszalińska; 2008 (in Polish).
7.
Sozański MM, Huck PM. Badania doświadczalne w rozwoju technologii uzdatniania wody. Monografie Komitetu Inżynierii Środowiska PAN, vol. 42, 2007. Lublin: Wydawnictwo Drukarnia LIBER DUO S.C.; 2007 (in Polish).
8.
AWWA-ASCE. Water Treatment Plant Design. New York: Mc Graw-Hill; 2005.
9.
World Health Organization. Guidelines for drinking-water quality. Third edition. Volume 1. Recommendations.
12.
Howe KJ, Hand DW, Crittenden JC, Trussell RR, Tchobanoglous G. Principles of Water Treatment. New Jersey: MWH. John Wiley & Sons, Inc., Hoboken 2012. [cited 2015 Dec 16]; Available from:
http://outsidethesink.rtu.lv/d....
13.
Wiąckowski SK. Wybrane zagadnienia ochrony i kształtowania środowiska przyrodniczego człowieka.
14.
Warszawa: PWN; 1998. p. 89-91 (in Polish).
15.
Maziarka S. Woda do picia – wymagania zdrowotne. Gaz, Woda i Technika Sanitarna. 1993; 4: 89 (in Polish).
16.
Żelechowska A. Ocena zagrożenia pestycydowego wody do picia. Ochrona Środowiska. 1993; 4(51): 63-64 (in Polish).
17.
Jankowska M. Występowanie pestycydów w wodach naturalnych. Ochrona Środowiska. 1998; 1(68): 13-16 (in.
19.
Buszewski B, Kosobucki P. Fizykochemiczne metody analizy chemii środowiska. Część II. Ćwiczenia.
20.
laboratoryjne z ochrony wód i gleb. Toruń: Wydawnictwo UMK; 2003 (in Polish).
21.
Gadzała-Kopciuch R, Buszewski B. Fizykochemiczne metody analizy chemii środowiska, Część I. Ćwiczenia.
22.
laboratoryjne z analityki i kontroli w ochronie środowiska. Toruń: Wydawnictwo UMK; 2003 (in Polish).
23.
Buszewski B, Dziubakiewicz E, Szumski M. Techniki elektromigracyjne. Teoria i praktyka. Warszawa:.
24.
Wydawnictwo MALAMUT; 2012 (in Polish).
25.
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique.
26.
Analytical and Bioanalytical Chemistry. 2012; 402(1): 231-247.
27.
Szczepaniak W. Metody instrumentalne w analizie chemicznej, Warszawa: PWN; 2011 (in Polish).
28.
Antonijević MD, Arsović M, Časlavsky J, Cvetković V, Dabić P, Franko M, et al. Actual contamination of the Danube and Sava Rivers at Belgrade (2013). J. Serb. Chem. Soc. 2014; 79(9): 1169–1184.
29.
Micic V, Hofmann T. Occurrence and behaviour of selected hydrophobic alkylphenolic compounds in the.
30.
Danube River. Environ. Pollut. 2009; 157: 2759-2768.
31.
Saliot A, Parrish CC, Sadouni N, Bouloubassi I, Fillaux J, Cauwet G. Transport and fate of Danube delta terrestrial organic matter in the Northwest Black Sea mixing zone. Mar. Chem. 2002; 79: 243-259.
32.
Loos R, Locoro G, Contini S. Occurrence of polar organic contaminants in the dissolved water phase of the.
33.
Danube River and its major tributaries using SPE-LC-MS(2) analysis. Water Res. 2010; 44: 2325-35.
34.
Covaci A, Gheorghe A, Hulea O, Schepens P. Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania. Environ. Pollut. 2006; 140: 136-149.
35.
Heath E, Ščančar J, Zuliani T, Milačić R. A complex investigation of the extent of pollution in sediments of the.
36.
Sava River. Part 2. Persistent organic pollutants. Environ. Monit. Assess 2010; 163: 277-293.
37.
Ahel M. Infiltration of organic pollutants into groundwater: field studies in the alluvial aquifer of the Sava River.
38.
Bull. Environ. Contam. Toxicol. 1991; 47(4): 586-593.
39.
Dsikowitzky L, Schwarzbauer J, Kronimus A, Littke R. Part I: Qualitative characterisation of low-molecular.
40.
weight organic compounds. Chemosphere. 2004; 57(10): 1275-88.
41.
Schwarzbauer J, Ricking M. Non-target screening analysis of river water as compound-related base for.
42.
monitoring measures. Environ Sci. Pollut. Res. Int. 2010; 17(4): 934-47.
43.
Frische K, Schwarzbauer J, Ricking M. Structural diversity of organochlorine compounds in groundwater.
44.
affected by an industrial point source. Chemosphere. 2010; 81(4): 500-8.
45.
Skutlarek D, Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters. Environ. Sci. Pollut.
46.
Res. Int. 2006; 13(5): 299-307.
47.
Safe S. Toxicology, structure-function relationship, and human and environmental health impacts of.
48.
polychlorinated biphenyls: progress and problems. Environ. Health Perspect. 1993; 100: 259-268.
49.
Brack W, Klamer HJ, López de Alda M, Barceló D. Effect-directed analysis of key toxicants in European river.
50.
basins a review. Environ Sci. Pollut. Res. Int. 2007; 14(1): 30-38.
51.
Buszewski B, Starek A, Pośniak M, Skowroń J. Substancje chemiczne. In: Centralny Instytut Ochrony Pracy, Nauka o pracy – bezpieczeństwo, higiena, ergonomia. Pakiet edukacyjny dla uczelni wyższych. [cited 2016 Feb 16]. Rozdział 6-9. Available from:
http://nop.ciop.pl/m6-9/m6-9_5... (in Polish).