REVIEW PAPER
Review of research on alcohol dependence in a model of mice selected for high and low stress-induced analgesia
 
More details
Hide details
 
Submission date: 2018-05-29
 
 
Acceptance date: 2018-06-19
 
 
Publication date: 2018-07-24
 
 
Health Prob Civil. 2018;12(3):217-222
 
KEYWORDS
TOPICS
ABSTRACT
Decades of studies on alcohol dependence showed that it is a very complex and multifactorial disorder. Several receptor systems are involved in development and susceptibility to alcohol abuse; however, there are some which play a crucial role in its pathogenesis, e.g. dopaminergic or opioid system. In this paper, an effort is made to explain the role of endogenous opioid system activity in alcohol dependence. To achieve the goal, we use a unique model is used which shows mice lines that are divergently selected for high (HA) and low (LA) stress-induced analgesia. This process allowed for selecting individuals characterised by hyperactive (HA) or hypoactive (LA) opioid system. Basing on the performed experiments, we proved that delta opioid receptors play a critical role in the development of addiction. The most notable achievement is an unspecific reaction of mice with the hyperactive opioid system to naloxone – an unspecific opioid system antagonist, which is currently approved in the pharmacotherapy of dependent patients.
REFERENCES (99)
1.
Gianoulakis C. Influence of the endogenous opioid system on high alcohol consumption and genetic.
 
2.
predisposition to alcoholism. J. Psychiatry Neurosci. 2001; 26(4): 304–318.
 
3.
Gilpin NW, Koob GF. Neurobiology of alcohol dependence: Focus on motivational mechanisms. Alcohol Res.
 
4.
Heal. 2008; 31(3): 185–195.
 
5.
Nutt DJ. The role of the opioid system in alcohol dependence. J. Psychopharmacol. 2014; 28(1): 8–22.
 
7.
Nestler EJ. Genes and addiction. Nat. Genet. 2000; 26(3): 277–281. https://doi.org/10.1038/81570.
 
8.
Kendler KS, Prescott CA, Myers J, Neale MC. The structure of genetic and environmental risk factors for.
 
9.
common psychiatric and substance use disorders in men and women. Arch. Gen. Psychiatry. 2003; 60(9):.
 
11.
Verhlust B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-analysis of twin and.
 
12.
adoption studies. Psychol. Med. 2015; 45: 1061–1072. https://doi.org/10.1017/S00332....
 
13.
Moos RH, Moos BS. Rates and predictors of relapse after natural and treated remission from alcohol use.
 
14.
disorders 2006; 101(2): 212–222. https://doi.org/10.1111/j.1360....
 
15.
Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid.
 
16.
receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology. 2014; 76(PART B):.
 
18.
Sacharczuk M, Juszczak G, Sliwa AT, Tymosiak-Zielinska A, Lisowski P, Jaszczak K, et al. Differences in ethanol.
 
19.
drinking between mice selected for high and low swim stress-induced analgesia 2008; 42: 487–492.
 
21.
Sacharczuk M, Leśniak A, Lipkowski AW, Korostynski M, Przewlocki R, Sadowski B. Association between.
 
22.
the A107V substitution in the delta-opioid receptors and ethanol drinking in mice selected for high and low.
 
23.
analgesia. Addict. Biol. 2013; 1–9. https://doi.org/10.1111/adb.12....
 
24.
Poznanski P, Lesniak A, Korostynski M, Szklarczyk K, Lazarczyk M, Religa P, et al. Delta-opioid receptor.
 
25.
antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid.
 
26.
system. Neuropharmacology. 2017; 118: 90–101. https://doi.org/10.1016/j.neur....
 
27.
Sacharczuk M, Juszczak G, Swiergiel AH, Jaszczak K, Lipkowski AW, Sadowski B. Alcohol reverses depressive.
 
28.
and pronociceptive effects of chronic stress in mice with enhanced activity of the opioid system. Acta.
 
29.
Neurobiol. Exp. (Wars). 2009; 69: 459–468.
 
30.
Sacharczuk M, Ragan AR, Szymanska H, Lesniak A, Sadowski B, Lipkowski AW. Distinct susceptibility to.
 
31.
inoculated melanoma and sensitivity to cancer pain in mouse lines with high and low sensitivity to stress. J.
 
32.
Env. Pathol Toxicol Oncol. 2012; 31(2): 167–177. https://doi.org/10.1615/JEnvir....
 
33.
Ragan AR, Leśniak A, Bochynska-Czyz M, Kosson A, Szymanska H, Pysniak K, et al. Chronic mild stress.
 
34.
facilitates melanoma tumor growth in mouse lines selected for high and low stress-induced analgesia 2013;.
 
36.
Panocka I, Marek P, Sadowski B. Tolerance and cross-tolerance with morphine in mice selectively bred for.
 
37.
high and low stress-induced analgesia. Pharmacol. Biochem. Behav. 1991; 40(2): 283–286.
 
39.
Panocka I, Marek P, Sadowski B. Inheritance of stress-induced analgesia in mice: Selective breeding study.
 
40.
Brain Res. 1986; 397: 152–155. https://doi.org/10.1016/0006-8....
 
41.
Gajkowska B, Kosson A, Sacharczuk M, Kosson P, Lipkowski AW. Blood-brain barrier permeability.
 
42.
differentiates Sadowski mouse lines of high and low stress-induced analgesia. Electron microscopy analysis.
 
43.
Folia Neuropathol. 2011; 49(4): 311–318.
 
44.
Kosson A, Krizbai I, Leśniak A, Beręsewicz M, Sacharczuk M, Kosson P, et al. Role of the blood-brain barrier.
 
45.
in differental response to opioid peptides and morphine in mouse divergently bred for high and low swim.
 
46.
stress-induced analgesia. Acta Neurobiol. Exp. (Wars). 2014; 74: 26–32.
 
47.
Panocka I, Marek P, Sadowski B. Differentiation of neurochemical basis of stress-induced analgesia in mice.
 
48.
by selective breeding. Brain Res. 1986; 397: 156–160. https://doi.org/10.1016/0006-8....
 
49.
Gianoulakis C. Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr. Top. Med. Chem.
 
50.
 
51.
Devine DP, Wise R. Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of.
 
52.
rats. J. Neurosci. 1994; 14(4): 1978–1984. https://doi.org/10.1523/JNEURO....
 
53.
Walker BM, Koob GF. Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol.
 
54.
dependence 2008; 33: 643–652. https://doi.org/10.1038/sj.npp....
 
55.
Roberts AJ, Gold LH, Polis I, McDonald JS, Filliol D, Kieffer BL, et al. Increased ethanol self-administration in.
 
56.
delta-opioid receptor knockout mice. Alcohol. Clin. Exp. Res. 2001; 25(9): 1249–1256.
 
58.
Gaveriaux-Ruff C, Kieffer BL. Opioid receptors genes inactivated in mice: The highlights. Neuropeptides.
 
59.
2002; 36(2–3): 62–71.
 
60.
van Rijn RM, Brissett DI, Whistler JL. Dual efficacy of delta opioid receptor-selective ligands for ethanol.
 
61.
drinking and anxiety. J. Pharmacol. Exp. Ther. 2010; 335(1): 133–9. https://doi.org/10.1124/jpet.1....
 
62.
Froehlich JC, Zweifel M, Harts J, Lumeng L, Li TK. Importance of delta opioid receptors in maintaining high.
 
63.
alcohol drinking. Psychopharmacology (Berl). 1991; 103: 467–472. https://doi.org/10.1007/BF0224....
 
64.
Lê AD, Poulos CX, Quan B, Chow S. The effects of selective blockade of delta and mu opiate receptors on.
 
65.
ethanol consumption by C57BL/6 mice in a restricted access paradigm. Brain Res. 1993; 630(1–2): 330–332.
 
67.
June HL, McCane SR, Zink RW, Portoghese PS, Li TK, Froehlich JC. The δ2-opioid receptor antagonist naltriben.
 
68.
reduces motivated responding for ethanol. Psychopharmacology (Berl). 1999; 147(1): 81–89.
 
70.
Hyytiä P. Involvement of μ-opioid receptors in alcohol drinking by alcohol-preferring AA rats. Pharmacol.
 
71.
Biochem. Behav. 1993; 45(3): 697–701. https://doi.org/10.1016/0091-3....
 
72.
Van Rijn RM, Whistler JL. The delta1 opioid receptor is a heterodimer that opposes the actions of the delta2.
 
73.
receptor on alcohol intake. Biol. Psychiatry. 2009; 66: 777–784. https://doi.org/10.1016/j.biop....
 
74.
Roberts AJ, Mcdonald JS, Heyser CJ, Kieffer BL, Matthes HWD, Koob GF, et al. μ-Opioid Receptor Knockout.
 
75.
Mice Do Not Self-Administer Alcohol. 2000; 293(3): 1002–1008.
 
76.
Hall FS, Sora I, Uhl GR. Ethanol consumption and reward are decreased in μ-opiate receptor knockout mice.
 
77.
Psychopharmacology (Berl). 2001; 154(1): 43–49. https://doi.org/10.1007/s00213....
 
78.
Giuliano C, Goodlett CR, Economidou D, Garcia-Pardo MP, Belin D, Robbins TW, et al. The Novel μ-Opioid.
 
79.
Receptor Antagonist GSK1521498 Decreases Both Alcohol Seeking and Drinking: Evidence from a New.
 
80.
Preclinical Model of Alcohol Seeking. 2015; 40(13): 2981–2992. https://doi.org/10.1038/npp.20....
 
81.
Kovacs K M, Szakall I, O’Brien D, Wang R, Vinod Y K, Saito M, et al. Decreased oral self-administration of.
 
82.
alcohol in κ-opioid receptor knock-out mice. Alcohol. Clin. Exp. Res. 2005; 29(5): 730–738.
 
84.
Blednov Y A, Walker D, Martinez M, Harris RA. Reduced alcohol consumption in mice lacking preprodynorphin.
 
85.
 
86.
Walker BM, Zorrilla EP, Koob GF. Systemic kappa-opioid receptor antagonism by nor-binaltorphimine.
 
87.
reduces dependence-induced excessive alcohol self-administration in rats. Addict. Biol. 2010; 16: 116–119.
 
89.
Schank JR, Goldstein AL, Rowe KE, King CE, Marusich JA, Wiley JL, et al. The kappa opioid receptor antagonist.
 
90.
JDTic attenuates alcohol seeking and withdrawal anxiety. Addict. Biol. 2012; 17: 634–647.
 
92.
Morales M, Anderson RI, Spear LP, Varlinskaya EI. Effects of the kappa opioid receptor antagonist, norbinaltorphimine,.
 
93.
on ethanol intake: Impact of age and sex. Dev. Psychobiol. 2013; 700–712.
 
95.
Sacharczuk M, Sadowski B, Jaszczak K, Lipkowski AW, Swiergiel AH. Opposite effects of alcohol in regulating stress-induced chanes in body weight between the two mouse lines with enhanced or low opioid system activity. Physiol. Behav. 2010; 99: 627–631. https://doi.org/10.1016/j.phys....
 
96.
Lutfy K, Sadowski B, Kwon IS, Weber E. Morphine analgesia and tolerance in mice selectively bred for divergent swim stress-induced analgesia. Eur. J. Pharmacol. (Molecular Pharmacol. Sect.). 1994; 265: 171–174.
 
97.
Kest B, McLemore GL, Sadowski B, Mogil JS, Belknap JK, Inturrisi CE. Acute morphine dependence in mice.
 
98.
selectively-bred for high and low analgesia. Neurosci. Lett. 1998; 256: 120–122.
 
eISSN:2354-0265
ISSN:2353-6942
Journals System - logo
Scroll to top